IXP in the Cloud era: the SDN opportunity

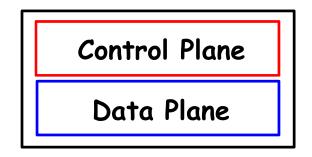
Antonio Cianfrani DIET Department – Networking Group

Outline

- Software Defined Networks (SDN): an overview
- IXP: the right place for SDN deployment?
- IXP and the Cloud scenario

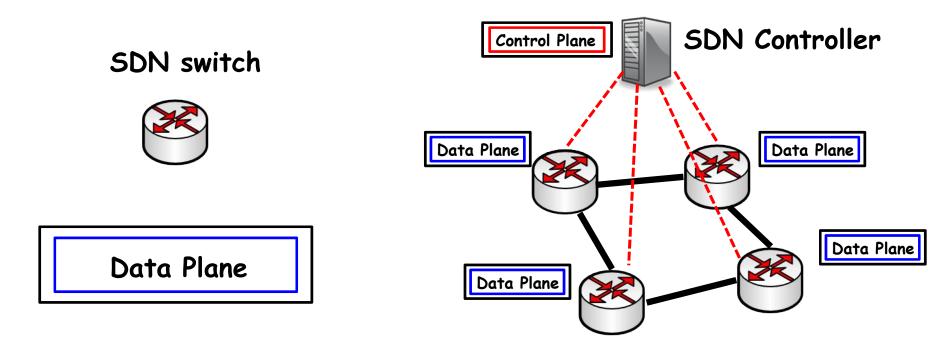
SDN

- SDN: new paradigm to overcome the ossification of legacy IP networks:
 - Network devices are proprietary → Configuration procedures are different
 - A device for each network function (router, firewall, load balancer)
 - New network function → standardization, device update
- SDN idea comes from the Clean Slate Project:


"...explore what kind of Internet we would design if we were to start with a clean slate and 20-30 years of hindsight."

Legacy network devices

- Vertical integrated stacks
 - Dedicated networking hardware
 - Network Operating System (closed)
 - Functionalities to be added → new operating system or new device!
- A legacy device performs:
 - Data plane actions (forwarding of packets)
 - Control plane action (protocols \rightarrow network intelligence)



L3 Rout.	VLAN	Secur.	•••
Network OS			
Hardware			

Software Defined Networking: the idea

- The control and the data plane are decoupled
- The control plane is logically centralized
- The data plane is programmable and abstracted from the control plane

SDN: the Controller

- The control plane software runs on general purpose hardware \rightarrow the SDN Controller
- The SDN Controller controls and programs the SDN switches, executing Network Applications decisions

Network Applications

- Network Applications:
 - switching, routing
 - NAT, L3/L4 firewalling
 - network slicing, traffic engineering
- Applications are decoupled from specific networking hardware → the network is open!
- Functions can be added/removed/changed by configuring software on top of the controller; no need to touch SDN switches.

SDN switch

- The network infrastructure is programmable and abstracted from the applications
- An SDN switch has a Flow Table to perform forwarding:
 - Forwarding based on many header fields → Flow based forwarding
 - Advanced forwarding: encapsulation / header fields modification
- Southbound protocol
 - OpenFlow
 - NetConf
 - BGP-LS

.

SDN in action

- Open Source activity
 - Data Plane: Open vSwitch
 - Controller: NOX, Floodlight, ONOS; etc...
- Networking companies:
 - OpenFlow Switches (Cisco, Juniper, NEC, HP, Pronto,...)
 - Programmable hardware: FD.IO (Cisco, Ericsson, Intel,..)
- A real SDN implementation "B4: Experience with a Globally-Deployed Software Defined WAN"

SDN from an IXP perspective

- An IXP is the <u>right place</u> where to deploy SDN:
 - An IXP has an intrinsic SDN architecture: the switches as Data Plane and the Route Server as Controller
 - New SDN based functionalities will be able to provide benefits for all its peering ISPs
 - The cloud scenario

The Cloud scenario

- Content Providers, CDN, Cloud Providers
- New service requirements:
 - fast and efficient services for their users;
 - highly dynamic.
- Cloud Providers ask for new inter-domain TE routing policies:
 - QoS constrained end-to-end service
 - Fine grained service specific peering (application-specific peering)

Inter-domain TE policies

- Routing policies are managed by BGP.
 Constraints:
 - Routing only based on destination IP prefix
 - Paths are not directly selected (indirect policies such as local-pref and AS prepending)
 - QoS constrained end-to-end services difficult (impossible?) to be provided

An SDN based IXP

- New features provided by SDN :
 - Forwarding based on many packet header fields
 → Flexible Forwarding and fine grained policies (application-specific forwarding)
 - New Control Plane functionalities on top of the SDN Controller → new communication mechanism for path selection (QoS constrained end-to-end path)
 - Backward compatibility (BGP support) → Incremental deployment

More applications

- Redirection to middleboxes
- Security
- Load-balancing
- Traffic offloading

Thanks!